Problem 1.40

A cannon shoots a ball at an angle θ above the horizontal ground. (a) Neglecting air resistance, use Newton's second law to find the ball's position as a function of time. (Use axes with x measured horizontally and y vertically.) (b) Let $r(t)$ denote the ball's distance from the cannon. What is the largest possible value of θ if $r(t)$ is to increase throughout the ball's flight? [Hint: Using your solution to part (a) you can write down r^{2} as $x^{2}+y^{2}$, and then find the condition that r^{2} is always increasing.]

Solution

Start by drawing a free-body diagram of the ball. Because there's no air resistance, there's only a gravitational force acting on the ball.

Newton's second law states that the sum of the forces on the ball is equal to its mass times acceleration.

$$
\sum \mathbf{F}=m \mathbf{a} \Rightarrow\left\{\begin{array}{l}
\sum F_{x}=m a_{x} \\
\sum F_{y}=m a_{y} \\
\sum F_{z}=m a_{z}
\end{array}\right.
$$

The only force is due to gravity, and it's in the negative y-direction.

$$
\left\{\begin{aligned}
0 & =m a_{x} \\
-m g & =m a_{y} \\
0 & =m a_{z}
\end{aligned}\right.
$$

Divide both sides of each equation by m.

$$
\left\{\begin{aligned}
0 & =a_{x} \\
-g & =a_{y} \\
0 & =a_{z}
\end{aligned}\right.
$$

Acceleration is the second derivative of position.

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}=0 \\
\frac{d^{2} y}{d t^{2}}=-g \\
\frac{d^{2} z}{d t^{2}}=0
\end{array}\right.
$$

Integrate both sides of each equation with respect to t to get the components of the ball's velocity.

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=C_{1} \tag{1}\\
\frac{d y}{d t}=-g t+C_{2} \\
\frac{d z}{d t}=C_{3}
\end{array}\right.
$$

The components of the initial velocity in the x-, y-, and z-directions are $v_{\mathrm{o}} \cos \theta, v_{\mathrm{o}} \sin \theta$, and 0 , respectively.

$$
\begin{array}{lll}
\frac{d x}{d t}(0)=C_{1}=v_{\mathrm{o}} \cos \theta & \rightarrow & C_{1}=v_{\mathrm{o}} \cos \theta \\
\frac{d y}{d t}(0)=-g(0)+C_{2}=v_{\mathrm{o}} \sin \theta & \rightarrow & C_{2}=v_{\mathrm{o}} \sin \theta \\
\frac{d z}{d t}(0)=C_{3}=0 & \rightarrow & C_{3}=0
\end{array}
$$

As a result, equation (1) becomes

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=v_{\mathrm{o}} \cos \theta \\
\frac{d y}{d t}=-g t+v_{\mathrm{o}} \sin \theta \\
\frac{d z}{d t}=0
\end{array}\right.
$$

Integrate both sides of each equation with respect to t once more to get the components of the ball's position.

$$
\left\{\begin{array}{l}
x(t)=v_{\mathrm{o}} t \cos \theta+C_{4} \tag{2}\\
y(t)=-\frac{1}{2} g t^{2}+v_{\mathrm{o}} t \sin \theta+C_{5} \\
z(t)=C_{6}
\end{array}\right.
$$

The ball's initial position is the origin, so $x=0, y=0$, and $z=0$ when $t=0$.

$$
\begin{array}{llll}
x(0) & =v_{\mathrm{o}}(0) \cos \theta+C_{4}=0 & & C_{4}
\end{array}=0.1 \text { (0) }
$$

Consequently, equation (2) becomes

$$
\left\{\begin{array}{l}
x(t)=v_{\mathrm{o}} t \cos \theta \\
y(t)=-\frac{1}{2} g t^{2}+v_{\mathrm{o}} t \sin \theta \\
z(t)=0
\end{array}\right.
$$

Therefore, the ball's position is

$$
\mathbf{r}(t)=\left\langle v_{\mathrm{o}} t \cos \theta,-\frac{1}{2} g t^{2}+v_{\mathrm{o}} t \sin \theta, 0\right\rangle .
$$

Notice that this formula can be obtained by taking the limit of the position vector in Problem 1.39 as $\phi \rightarrow 0$. The distance of the ball from the origin is

$$
\begin{aligned}
r(t) & =|\mathbf{r}(t)| \\
& =\sqrt{\left(v_{\mathrm{o}} t \cos \theta\right)^{2}+\left(-\frac{1}{2} g t^{2}+v_{\mathrm{o}} t \sin \theta\right)^{2}+0^{2}} \\
& =\sqrt{v_{\mathrm{o}}^{2} t^{2} \cos ^{2} \theta+\frac{1}{4} g^{2} t^{4}-g t^{3} v_{\mathrm{o}} \sin \theta+v_{\mathrm{o}}^{2} t^{2} \sin ^{2} \theta} \\
& =\sqrt{\frac{1}{4} g^{2} t^{4}-g t^{3} v_{\mathrm{o}} \sin \theta+v_{\mathrm{o}}^{2} t^{2}}
\end{aligned}
$$

For the distance from the origin to the ball to always be increasing, the first derivative of $r(t)$ must be greater than or equal to zero for all time. $r(t)$ is a square root function, which is monotonically increasing, so $[r(t)]^{2}$ will have the same behavior. $[r(t)]^{2}$ is preferable to work with because it has no square root.

$$
\begin{aligned}
\frac{d}{d t}[r(t)] \geq 0 \Rightarrow & \frac{d}{d t}[r(t)]^{2} \geq 0 \\
& \frac{d}{d t}\left(\frac{1}{4} g^{2} t^{4}-g t^{3} v_{\mathrm{o}} \sin \theta+v_{\mathrm{o}}^{2} t^{2}\right) \geq 0 \\
& g^{2} t^{3}-3 g t^{2} v_{\mathrm{o}} \sin \theta+2 v_{\mathrm{o}}^{2} t \geq 0 \\
& t\left(g^{2} t^{2}-3 g t v_{\mathrm{o}} \sin \theta+2 v_{\mathrm{o}}^{2}\right) \geq 0
\end{aligned}
$$

Since $t \geq 0$, the quadratic expression in parentheses must be greater than or equal to zero.

$$
g^{2} t^{2}-3 g t v_{\mathrm{o}} \sin \theta+2 v_{\mathrm{o}}^{2} \geq 0
$$

This inequality describes a parabola opening upward that has at most one zero; therefore, the discriminant is not positive.

$$
\left(-3 g v_{\mathrm{o}} \sin \theta\right)^{2}-4\left(g^{2}\right)\left(2 v_{\mathrm{o}}^{2}\right) \leq 0
$$

Solve for θ.

$$
\begin{gathered}
9 g^{2} v_{\mathrm{o}}^{2} \sin ^{2} \theta-8 g^{2} v_{\mathrm{o}}^{2} \leq 0 \\
9 \sin ^{2} \theta-8 \leq 0 \\
\sin ^{2} \theta \leq \frac{8}{9} \\
-\sqrt{\frac{8}{9}} \leq \sin \theta \leq \sqrt{\frac{8}{9}}
\end{gathered}
$$

Since $\theta>0$, only positive values of $\sin \theta$ need to be considered.

$$
0<\sin \theta \leq \sqrt{\frac{8}{9}}
$$

The largest possible value of θ if $r(t)$ is to increase throughout the ball's flight is then

$$
\begin{aligned}
\theta_{\max }=\sin ^{-1}\left(\sqrt{\frac{8}{9}}\right) & \approx 1.23 \mathrm{radians} \\
& \approx 70.5^{\circ}
\end{aligned}
$$

